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Abstract The metadynamic softening behaviors in 42CrMo

steel were investigated by isothermal interrupted hot com-

pression tests. Based on the experimental results, an efficient

artificial neural network (ANN) model was developed to

predict the flow stress and metadynamic softening fractions.

The effects of deformation parameters on metadynamic

softening behaviors in the hot deformed 42CrMo steel have

been investigated by the experimental and predicted results

from the developed ANN model. Results show that the effects

of deformation parameters, such as strain rate and deformation

temperature, on the softening fractions of metadynamic

recrystallization are significant. However, the strain (beyond

the peak strain) has little influence. A very good correlation

between experimental and predicted results indicates that the

excellent capability of the developed ANN model to predict

the flow stress level and metadynamic softening, the meta-

dynamic recrystallization behaviors were well evidenced.

Introduction

The hot rolling and forging processes often consist of several

successive deformation stages, including inter-pass periods

between deformations. During the inter-pass periods, the

metals and alloys will subject the dynamic recovery, static

recrystallization, and metadynamic recrystallization. Mean-

while, the materials are often subjected to complex time,

strain, strain rate, and temperature histories in industrial

forming processes. On the one hand, a given combination of

thermo-mechanical parameters yields a particular metallur-

gical phenomenon, including the microstructural evolution

during the inter-pass periods; on the other hand, microstruc-

tural changes of the metal in turn affect the mechanical

characteristics of the metal such as the flow stress, and hence

influence the forming process. Therefore, the constitutive flow

behaviors of materials, especially in multi-stage or multi-pass

processing, are quite complex in nature [1–7].

The conventional methods are to carry out the regression

analysis with the experimental results on the basis of the

classical models to obtain the constants in the models.

However, the response of the deformation behaviors of the

materials under elevated temperatures and strain rates is

highly nonlinear, and many factors affecting the flow stress

are also nonlinear, which make the accuracy of the flow

stress predicted by the regression methods low and the

applicable range limited [8–11]. However, the field of

neural networks can be thought of as being related to

artificial intelligence, machine learning, parallel process-

ing, statistics, and other fields. The attraction of artificial

neural networks (ANN) is that they are best suited to

solving the problems that are the most difficult to solve by

traditional computational methods. Neural networks can

provide a fundamentally different approach to materials

modeling and material processing control techniques than
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statistical or numerical methods. One of the main advan-

tages of this approach is that it is not necessary to postulate

a mathematical model at first or identify its parameters

using a neural network. In the past, some efforts have been

made to the applications of neural networks in industry or

academic study [12–20].

42CrMo (American grade: AISI 4140) is one of the

representative medium carbon and low alloy steels. Due to

its good balance of strength, toughness, and wear resis-

tance, 42CrMo high-strength steel is widely used for many

general purpose parts including automotive crankshaft,

rams, spindles, etc. In the past, many investigations have

been carried out on the behavior of 42CrMo steel [7–9, 20–

26]. Despite large amount of efforts invested into the

behaviors of 42CrMo steel, the kinetics of metadynamic

recrystallization in the hot deformed 42CrMo steel still

need to be further investigated to study the workability and

optimize the hot forming processing parameters.

In this study, the metadynamic softening behaviors in

42CrMo steel were investigated by isothermal interrupted

hot compression tests. An efficient ANN model was

developed to predict the metadynamic softening fractions

and investigate the effects of deformation parameters on

metadynamic softening behaviors in the hot deformed

42CrMo steel. Comparisons between the experimental and

predicted results were conducted.

Experiments

A commercial 42CrMo high-strength steel of composit-

ions (wt.%) 0.450C–0.280Si–0.960Cr–0.630Mn–0.190Mo–

0.016P–0.012S–0.014Cu–(bal.)Fe was used in this investi-

gation. Cylindrical specimens were machined with a

diameter of 10 mm and a height of 12 mm. In order to

minimize the frictions between the specimens and die during

hot deformation, the flat ends of the specimen were recessed

to a depth of 0.1 mm deep to entrap the lubricant of graphite

mixed with machine oil. In order to study the progress of

metadynamic softening, two-pass hot compression tests

were performed on a computer-controlled Gleeble-1500

thermo-simulation machine. The specimen is resistance

heated by thermo coupled-feedback-controlled AC current.

As shown in Fig. 1, the specimens were heated to 1200 �C

at a heating rate of 10 �C/s, held for 5 min and cooled at

10 �C/s to the deformation temperature, held for 1 min to

eliminate thermal gradients. Four different deformation

temperatures (850, 950, 1050, and 1150 �C) and four dif-

ferent strain rates (0.01, 0.1, 0.5, and 1 s-1) were used in

double hit hot compression tests. In order to investigate the

effects of strain on the metadynamic recrystallization

behavior, three different deformation degrees (a reduction of

30, 40, and 50% in specimen height) were applied. Of course,

the first deformation should be interrupted above the critical

strain required for dynamic recrystallization in order to ini-

tiate dynamic recrystallization. Then the metadynamic

recrystallization would occur in the unloading period (inter-

pass). The critical strains had been reported elsewhere [7–9].

The deformation temperatures, strain rates, and the defor-

mation degrees are same for the first and second

deformations. After unloading (the phases between the first

and second deformations), the specimens were held at the

deformation temperature for the inter-pass delay time of

1–50 s to enable metadynamic recrystallization to progress.

A second deformation was then applied to measure the

amount of softening, and then the specimens were rapidly

quenched in water.

Figure 2 shows the typical true stress–strain curves

obtained from two-pass hot compression tests of 42CrMo

steel for different inter-pass delay time (under deformation

temperature of 1050 �C, strain rate of 0.01 s-1, and

deformation degree of 30%). It can be found that the yield

stress of the second deformation generally decreases as the

inter-pass delay time is increased under the same heat

treatment history and deformation schedule. The metady-

namic softening increase as the delay time is increased.

Significant metadynamic recrystallization will occur in the

unloading period (inter-pass) when the delay time is

increased, which will cause more work hardening in the

second deformation. Because the dynamic recrystallization

will lead to more fine grain, the grain boundary area per

unit volume will increase and in turn accelerate the

recrystallization nucleation rate. This will greatly reduce
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Fig. 1 Experimental procedure for two-pass hot compression tests
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the peak stress and strain after metadynamic recrystalli-

zation. Similar results were obtained under other test

conditions.

Development of ANN model for flow stress prediction

Theory of ANN

ANNs are a large class of parallel processing architectures,

which can mimic complex and nonlinear relationships

through the application of many non-linear processing

units called neurons. The relationship can be ‘learned’ by a

neural network through adequate training from the exper-

imental data. It can not only make decisions based on

incomplete and disorderly information, but can also gen-

eralize rules from those cases on which it was trained and

apply these rules to new cases. Usually, the structure of an

ANN is hierarchical with neurons grouped in different

layers designed as an input layer, hidden layers and on

output layer, as shown in Fig. 3. More detailed information

about ANN can be found in Ref. [27], which introduced
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Fig. 2 Typical true stress–

strain curves for inter-pass delay

time of (a) 0.5 s, (b) 10 s,

(c) 20 s, and (d) 50 s (under

deformation temperature of

1050 �C, strain rate of 0.01 s-1,

and deformation degree of 30%)
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the BP neural network
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neural networks and reviewed some applications of the

technique in the context of materials science.

The multilayer feed forward network with back propa-

gation (BP) learning is the most popular of all ANN

models. The feed forward BP neural network is actually

composed of two neural network algorithms: (a) feed for-

ward and (b) BP. The term ‘feed forward’ refers to a

method by which a neural network processes the pattern

and recalls patterns, whereas the term ‘back propagation’

describes how this type of neural network is trained. BP is a

form of supervised training. When using a supervised

training method the network must be provided with sample

inputs and anticipated outputs (target), as shown in Fig. 3.

These anticipated outputs will be compared against the

predicted outputs from the neural network. Then, the BP

training algorithm takes a calculated error and adjusts the

weights of the various layers backwards from the output

layer all the way back to the input layer until a good match

is achieved, i.e., the error between the predicted and

measured flow stresses is minimized to below a predefined

convergence limit. In order to validate the generalization

capability of the newly trained ANN, a set of test data, i.e.,

data not used in the training stage, is supplied as the inputs.

If the error between the predicted and anticipated values of

output is small enough, the network is well trained. Here,

the convergence criterion for the network is determined by

the average root mean square (RMS) error between the

desired and predicted output values,

ERMS ¼
1

N

XN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

p

Xp

j¼1

ðdji � yjiÞ2
vuut ð1Þ

where ERMS is the average RMS, N is the number of

training or testing data, p is the number of variables in the

output, dj(n) and yj(n) are the target output and network

output for neuron j, respectively. 1% RMS error has been

set as the convergence criterion in the ANN model for the

flow stress prediction.

Unification of the training set

ANN requires that the range of both input data and output

data should be 0–1; consequently, the data must be unified.

The widely used method of unification is

Xi ¼ 0:1þ 0:8� X � Xmin

Xmax � Xmin

� �
ð2Þ

where X is the original data, Xmin the minimum value of X,

Xmax the maximum value of X, and Xi the unified data of

the corresponding X. It should be emphasized that the

logarithmic value of strain rate (_e) was used in present

study because _e changes severely and causes too small a

unified value of _emax for the ANN to learn.

Design and training of ANN model for flow stress

prediction

The schematic of the ANN structure for flow stress pre-

diction in 42CrMo steel is shown Fig. 4. The inputs of the

model are strain (e), log strain rate (log _e), temperature (T),

inter-pass delay time (tint-pass), and deformation degree in

the first deformation (e1). The output of the model is flow

stress (r). The feed forward network with BP learning

algorithm has been used to train the model. The learning is

based on gradient descent algorithm and hence requires the

activation function to be differentiable, and a logistic sig-

moid function was employed as the activation function, as

shown in Fig. 5.

A total of 600 input/output data points have been

selected from 40 stress–strain curves, which were obtained

Artificial 

Neural

Network 

Strain, ε

Temperature, T

Log strain rate, logε& Flow stress, σ

Delay time, int-passt

Deformation degree, 1ε

Fig. 4 Schematic of the ANN structure for flow stress prediction for

42CrMo steel

Fig. 5 Shape of logistic sigmoid function

Table 1 Statistical analysis of the variables used to develop the

neural network model

Variables Minimum

value

Maximum

value

Average Standard

deviation

T, �C 850 1150 1000 129.1

_e, s-1 0.01 1 0.40 0.45

e 0.1 0.9 0.50 0.24

e1 0.1 0.7 0.40 0.18

tint-pass 0.5 50 15 19
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from the thermo-simulation experiments. The statistical

analysis of the variables (e, log _e; T, e1, tint-pass) used to

develop the neural network model for 42CrMo steel is

shown in Table 1. All datasets were unified between 0 and

1 in order to ensure that each variable lies in the same

range during training and testing. Among these datasets,

70% of the datasets was randomly selected to train the

ANN model, while the remainder 30% (previously unused

data) was used to test the predictability of the newly trained

ANN, that is, to validate the ability of developed ANN

model to predict the flow stress for 42CrMo steel. Gener-

ally, this iterative process is considered as the appropriate

compromise between predictability and overfitting. Addi-

tionally, the Bayesian regularization algorithm is combined

with BP neural network to obtain the better generalization

and faster speed of convergence, and higher learning

accuracy because multiple parameters and larger patterns

were inputted.

Results and discussion

Neural network results

After repeated trials by changing the number of neurons in

the hidden layer from 4 to 30, it was found that a network

with one hidden layer consisting of 18 hidden neurons

gives a minimum RMS error and thereby considered as the

optimal configuration for the prediction of flow stress for

42CrMo steel. The number of iteration is 20,000. In this

study, correlation coefficient (R), scatter index (SI), and

average absolute relative error (AARE) were used to

qualify the generalization capability of the training and

testing network, and the expressions of R, SI, and AARE

can be written as

R ¼
PN

i¼1 ðEi � �EÞðPi � �PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðEi � �EÞ2

PN
i¼1 ðPi � �PÞ2

q ð3Þ

AAREð%Þ ¼ 1

N

XN

i¼1

Ei � Pi

Ei

����

����� 100 ð4Þ

SI ¼ ERMS

�E
ð5Þ

where E is the experimental result and P is the pre-

dicted value obtained from the neural network model. �E

and �P are the mean values of E and P, respectively. N

is the total number of data employed in the investiga-

tion. Table 2 shows the performance of neural network

predictions for both the training and testing data. It can

be found that the values of AARE for the training and

test dataset are only 5.45 and 4.86%, respectively,

which shows that the generalization capability of the

training and testing network is satisfied. Meanwhile, the

comparisons between the experimental and correspond-

ing predicted results for both the training and testing

datasets of 42CrMo steel are shown in Fig. 6. The

trendline involved in Fig. 6 indicates close agreement

between the predicted and experimental flow stresses.

The results show that a very good correlation between

experimental and predicted results has been obtained,

which suggests that the neural network is able to suc-

cessfully predict the compressive deformation behaviors

of 42CrMo steel.

Table 2 Statistic analysis of

the performance of ANN model

for training and testing

predictions

Learning

rate

Weight

initialization

RMS error (%) R AARE (%) SI

Training Testing Training Testing Training Testing Training Testing

0.1 ±0.1 5.78 6.32 0.995 0.993 5.45 4.86 0.052 0.048
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the experimental and predicted

flow stress of 42CrMo steel
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predicted training data and (b)

predicted testing data
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Application of the developed ANN model to predict

metadynamic softening fractions

Metadynamic softening fractions

The interrupted deformation method is based on the prin-

ciple that the yield stress at high temperatures is a sensitive

measure of the structural changes. In this study, the 0.2%

offset yield strength was used to determine the softening

due to metadynamic recrystallization and recovery. The

softening fraction, Fmd, is determined by the ‘‘offset

method’’

Fmd ¼
rm � r2

rm � r1

ð6Þ

where rm is the flow stress at the interruption, r1 and r2 are

the offset stress (0.2%) at the first deformation and the

second deformation, respectively. rm, r1, and r2 are

obtained from the predicted stress–strain curves by the

above-developed ANN model.

Influence of deformation parameters on metadynamic

softening

The effects of deformation parameters, including the defor-

mation temperature, strain rate, deformation degree, and

initial grain sizes, on the metadynamic recrystallization of

two-pass hot compressed 42CrMo steel were discussed.

Figure 7 shows the relative importance of processing

parameters for metadynamic softening predictions. It is

obvious that the effects of the deformation temperature and

strain rate are significant, while the deformation degree (in

the first stage of deformation) affects only slightly. The

effects of processing parameters on the metadynamic

softening are discussed below. Additionally, it should be

pointed out that the experimental data considered in

Figs. 8–10 have not been included in the training process of

the developed model in order to build an efficient ANN

model. In Figs. 8–10, only the mean values of the predic-

tions were given.

Effects of deformation temperature The metadynamic

softening fractions were plotted against the inter-pass delay

time for four different deformation temperatures at strain

rate of 0.1 s-1 and deformation degree of 30%, as shown in

Fig. 8. It is obvious that a good agreement between the

experimental and predicted results by the developed ANN

model is obtained. Figure 8 indicates that the effects of

deformation temperatures on metadynamic softening are

significant. The softening fractions increase with the

Processing Parameters
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Fig. 7 Bar plots showing the relative importance of processing

parameters for metadynamic softening predictions

Fig. 8 Effects of deformation temperatures on metadynamic

softening

Fig. 9 Effect of strain rates on metadynamic softening
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increase of the deformation temperatures, and the softening

curves under deformation temperatures of 850, 950, and

1050 �C follow Avrami equation, i.e., they have conven-

tional sigmoidal appearance. However, under the

deformation temperature of 1150 �C, the softening curve

appears relatively flat and the values of softening fractions

are higher than other deformation temperature conditions,

which is induced by the rapid metadynamic recrystalliza-

tion under high temperature. Meanwhile, under the

deformation temperature of 850 �C and the inter-pass delay

time of 50 s, the value of softening fraction is only 0.87

and the rate of softening rapidly decreases, which means

this test condition cannot result in a complete metadynamic

recrystallization. As the softening mechanisms are ther-

mally activated, the fractional softening increases as the

temperature increases.

Effects of strain rate Figure 9 shows the changes of

softening fractions with inter-pass delay time under dif-

ferent strain rates (under the deformation temperature of

1050 �C and deformation degree of 30%). It is obvious that

the predicted results by ANN model are consistent with the

experimental ones. Figure 9 indicates that strain rate has a

great influence on the fractional softening of metadynamic

recrystallization, and it is evident that the recrystallization

kinetics is accelerated significantly when the strain rate is

increased. The softening fractions with the strain rate of

1 s-1 are greatly larger than those with lower strain rates of

0.01 s-1, especially in the shorter inter-pass delay time

cases. This is due to the higher strain energy stored in the

deformation block under high strain rate conditions as a

consequence of lesser time being available for dynamic

recovery. Then, the reduced extent of dynamic recovery

occurring at higher strain rates in turn produces a higher

dislocation density and increases the driving force for

recrystallization.

Effects of deformation degree In order to investigate the

effect of deformation degree on the kinetics of metadynamic

recrystallization of 42CrMo steel, the pre-strain of the first

deformation in the double deformation test was varied from

the peak strain to the strain at steady state stress, i.e., above

the critical strain required for dynamic recrystallization. The

critical strain is often taken as about 0.8 ep (ep is the peak

strain) [7–9]. The softening fractions as a function of inter-

pass delay time for three pre-strain conditions (a reduction of

30, 40, and 50% of specimen height in the first deformation)

are shown in Fig. 10. Both the results of ANN model and

experiments indicate that the softening fractions and the rate

of softening increase as the deformation degree is increased.

The softening curves indicate that strain has little influence

upon the softening fractions of metadynamic recrystalliza-

tion. For dynamic recrystallization, beyond the peak strain,

changes in strain do not significantly change the substruc-

ture; hence the lack of influence of strain on the metadynamic

characteristics. However, for the case of the deformation

degree of 30%, it seems that the strain has a little influence

upon the softening fractions of metadynamic recrystalliza-

tion. This attributes to the relatively small pre-strain, which

is very close to the critical strain required for dynamic

recrystallization.

Conclusion

In this study, a feed forward BP ANN model is developed to

predict the flow stress and metadynamic softening of hot

deformed 42CrMo steel based on the isothermal interrupted

hot compression tests. A very good correlation between

experimental and predicted results from the developed ANN

model has been obtained, which indicates the excellent

capability of the developed ANN model to predict the flow

stress level and metadynamic softening of multi-pass hot

deformed 42CrMo steel. The effects of deformation

parameters on metadynamic softening in the hot deformed

42CrMo steel have been discussed in detail. Both the

experimental and predicted results indicate that the effects of

deformation parameters, including the strain rate and

deformation temperature, on the metadynamic softening in

two-pass hot deformed 42CrMo steel are significant. The

softening fractions rapidly increase with the increase of the

deformation temperatures and/or strain rates, while the

effects of deformation degree on the softening are not very

marked, which means that pre-strain (the deformation degree

of the first compression), beyond the peak strain, has little

influence on the softening fraction induced by the metady-

namic recrystallization of 42CrMo steel.
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